Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Aminoguanidinium (2+) aminoguanidinium (1+) hexachloroantimonate(III) at 295 and 92 K

Maciej Bujak, Przemysław Osadczuk and Jacek Zaleski*

Institute of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
Correspondence e-mail: zaleski@uni.opole.pl

Received 31 July 2000
Accepted 9 January 2001
The crystal and molecular structure of the title compound, $\left(\mathrm{CH}_{7} \mathrm{~N}_{4}\right)\left(\mathrm{CH}_{8} \mathrm{~N}_{4}\right)\left[\mathrm{SbCl}_{6}\right]$, has been determined at 295 and 92 K . It is composed of isolated $\left[\mathrm{SbCl}_{6}\right]^{3-}$ octahedra and aminoguanidinium mono- and dications. One of four of the crystallographically inequivalent aminoguanidinium cations is disordered at both temperatures. Two crystallographically inequivalent $\left[\mathrm{SbCl}_{6}\right]^{3-}$ octahedra were found to possess three significantly longer $\mathrm{Sb}-\mathrm{Cl}$ bonds than three other octahedra. The shorter bonds are in the range 2.456 (2)-2.577 (2) \AA, whereas the longer ones are between 2.705 (2) and 2.931 (2) \AA. Each short $\mathrm{Sb}-\mathrm{Cl}$ bond is located trans to a long bond. It is argued that this deformation is caused by $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds.

Comment

Alkylammonium halogenoantimonates(III) are a group of organic-inorganic salts. They are characterized by a general formula $R_{a} \mathrm{Sb}_{b} X_{c}(R=$ organic cation, $X=\mathrm{Cl}, \mathrm{Br}$ or I$)$. Their anionic sublattices are generally built from distorted $\left[\mathrm{Sb} X_{6}\right]^{3-}$ octahedra, which are isolated or joined with each other by corners, edges or faces, typically forming more complex polyanions (Sobczyk et al., 1997). Organic cations fill the voids in the anionic sublattice and are typically bound to the anionic sublattice by $\mathrm{N}-\mathrm{H} \cdots X$ hydrogen bonds.

Many salts of this class are characterized by the presence of phase transitions, some of them to polar phases (Jakubas, 1986). The mechanisms of these transformations are often associated with a decrease in rotational freedom of the organic cations on lowering the temperature (Jakubas, 1990). The slowing down of reorientational motions of the cations leads to instabilities in the crystal lattice, resulting in a lowering of the symmetry. This is often associated with changes in the hydrogen-bonding scheme. Generally, in this class of chloroantimonates(III), the environment of the $\mathrm{Sb}^{\mathrm{III}}$ atom is almost always significantly distorted. The $\mathrm{Sb}-\mathrm{Cl}$ bond lengths differ from each other sometimes by as much as ca $0.9 \AA$ (Bujak \& Zaleski, 1998). In a series of our earlier work we correlated the differences in the $\mathrm{Sb}-\mathrm{Cl}$ bond lengths to: (i) primary deformation resulting from the tendency of $\left[\mathrm{SbCl}_{6}\right]^{3-}$ octahedra to
share Cl atoms with each other, resulting in the formation of polyanionic units; and (ii) secondary deformation resulting from the presence of $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds which additionally distort $\left[\mathrm{SbCl}_{6}\right]^{3-}$ octahedra, shifting Cl atoms in the direction of a positive charge located on the cation.

We have also noticed that significant changes in $\mathrm{Sb}-\mathrm{Cl}$ bond lengths take place with decreasing temperature. The largest changes are associated with changes in the hydrogenbonding scheme across a phase transition [0.326 (4) Å; Zaleski \& Pietraszko, 1996]. Smaller changes [0.049 (2) Å; Bujak \& Zaleski, 1998] are correlated with a decrease in the donor/ acceptor distances within hydrogen bonds with decreasing temperature.

The present work results from our earlier investigations in which chloroantimonates(III) with guanidinium cations were characterized by the presence of solid-solid phase transitions correlated with changes in the molecular motion of the organic sublattice. The structure, phase transitions and molecular motion in these crystals have been studied by differential scanning calorimetry, dielectric, pyroelectric, IR, NMR and X-ray diffraction methods (Zaleski, 1995, and references therein). Recently, we have extended those studies to $N, N, N^{\prime}, N^{\prime}$-tetramethylguanidinium derivatives. By changing the ratio of SbCl_{3} to $N, N, N^{\prime}, N^{\prime}$-tetramethylguanidine between $1: 10$ and 10:1, we were able to obtain only one salt of $R \mathrm{SbCl}_{4}$ stoichiometry (Bujak et al., 1999). In the crystal lattice, the $\left[\mathrm{SbCl}_{6}\right]^{3-}$ octahedra share two cis edges with two other neighbours, forming an infinite one-dimensional zigzag chain. The $N, N, N^{\prime}, N^{\prime}$-tetramethylguanidinium cations are located between the inorganic chains and bound to the anions by $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds. We have observed significant changes in the $\mathrm{Sb}-\mathrm{Cl}$ bond lengths and $\mathrm{Cl}-\mathrm{Sb}-\mathrm{Cl}$ angles on decreasing the temperature from 295 to 92 K . These were correlated with the changes in the donor/acceptor distances of $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds to the Cl atoms in question.

Aminoguanidine is a closely related derivative of guanidine. It was selected for the multiple possibilities it holds for creating intermolecular hydrogen-bond networks. The aminoguanidinium cation can exist in either a monocationic or a dicationic form (Bukvetskii et al., 1990). In each form, its structure may be represented by four resonance tautomers (Koskinen et al., 1996). Until now, only one salt containing an aminoguanidinium monocation has been reported for the whole family of halogenoantimonates(III) and halogenobismuthates(III) $\left(\mathrm{CH}_{7} \mathrm{~N}_{4}\right)_{3}\left[\mathrm{BiCl}_{6}\right]$ (Davidovich et al., 1995). Its structure consists of isolated $\left[\mathrm{BiCl}_{6}\right]^{3-}$ anions and aminoguanidinium $\left(\mathrm{CH}_{7} \mathrm{~N}_{4}\right)^{+}$cations connected to an anionic sublattice through $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds.

The structure was solved in both $P c$ and $P 2 / c$ space groups. The refinement in the $P 2 / c$ space led to a much higher R factor (ca 13%) than in the Pc group. Additionally, displacement parameters for several N atoms had non-positive values. We therefore selected the $P c$ space group. The asymmetric unit of aminoguanidinium(2+) aminoguanidinium(1+) hexachloroantimonate(III), (I), consists of two significantly distorted $\left[\mathrm{SbCl}_{6}\right]^{3-}$ octahedra and four aminoguanidinium cations (Fig. 1). Two of the cations are monocations and the two
others dications. The dications (AG1 and AG2), in contrast with the monocations (AG3 and AG4), possess an additional H atom located on the terminal ammonium group.

(I)

One of the monocations (AG4) is disordered. At 295 K, the disorder is realized by the presence of two positions for C 4 and N15, with occupancy factors of 0.6 (for C41 and N151) and 0.4 (for C42 and N152) (Fig. 2). At 92 K, only atom N15 is split between two positions, N151 and N152, with occupancy factors of 0.75 and 0.25 , respectively. The C 4 atom at 92 K only shows an enlarged displacement ellipsoid. All H atoms of the ordered cations were located from a difference Fourier synthesis. The $\mathrm{N}-\mathrm{H}$ bond lengths were set to an idealized distance of $0.90 \AA$ and were included as riding atoms. The CN_{3} guanidinium moiety in each cation at both temperatures is nearly planar, with an average deviation of $c a 0.01$ (1) \AA from the mean plane. The terminal N atom of the $\mathrm{NH}_{3}{ }^{+}$ammonium groups deviates from the CN_{3} guanidine plane by 0.24 (1) and 0.64 (1) \AA for AG1 and AG2 at 295 K , and by 0.30 (1) and 0.74 (1) Å, respectively, at 92 K . In the case of the AG3 and AG4 cations, they are almost planar, with an average deviation of 0.01 (1) \AA at 295 K and 0.02 (2) \AA at 92 K for all non- H atoms of the CN_{3} plane. The $\mathrm{NH}_{3}{ }^{+}$groups are twisted about $\mathrm{C}-\mathrm{N}$ bonds by 12.7 (9) ${ }^{\circ}$ in the case of AG1 and $-33.4(9)^{\circ}$ in the case of AG2 at 295 K , and 15.4 (6) and $-39.0(5)^{\circ}$ at 92 K , respectively. It should be noted that the dications differ in the conformation of the $\mathrm{NH}_{3}{ }^{+}$group, which is rotated by roughly 45° in AG1 with respect to the AG2 cation. Analogous

Figure 1
Packing diagram of (I) at 92 K viewed along the x axis. Only one position of the disordered N15 atom is shown for clarity. Displacement ellipsoids are plotted at the 50% probability level.
differences between the aminoguanidinium cation in the monocationic (Bryden, 1957; Koskinen et al., 1996; Akella \& Keszler, 1994) and dicationic (Ross et al., 1998; Ross et al., 1999) forms have been observed previously.

There are two crystallographically inequivalent $\left[\mathrm{SbCl}_{6}\right]^{3-}$ anions in the crystal structure. In each of the octahedra are observed three shorter and three longer $\mathrm{Sb}-\mathrm{Cl}$ bonds distributed mutually in a trans fashion. At 295 K , the three shorter $\mathrm{Sb}-\mathrm{Cl}$ bonds are in the range 2.469 (2) -2.577 (2) \AA for Sb 1 and between 2.456 (2) and 2.518 (2) \AA for the Sb 2 octahedron. The three longer $\mathrm{Sb}-\mathrm{Cl}$ distances range from 2.705 (2) to 2.902 (2) \AA for the Sb 1 octahedron and from 2.807 (2) to 2.931 (2) \AA for Sb 2 (Table 1). The average $\mathrm{Sb}-\mathrm{Cl}$ bond lengths are 2.665 (12) \AA for Sb 1 and 2.675 (12) \AA for Sb 2 . These are similar to the value of 2.643 (6) $\AA[2.652$ (6) \AA when corrected for thermal motion] found in undistorted octahedral $\left[\mathrm{SbCl}_{6}\right]^{3-}$ (Schroeder \& Jacobson, 1973). They differ from the value characteristic of this reference structure by $0.022(18) \AA$ for Sb 1 and by $0.032(18) \AA$ for the Sb 2 octahedron. The largest deviations are 0.259 (8) and 0.288 (8) \AA for Sb 1 and Sb 2 , respectively. The $\mathrm{Cl}-\mathrm{Sb}-\mathrm{Cl}$ angles involving Cl atoms mutually cis to each other range from 82.65 (5) to 93.61 (6) ${ }^{\circ}$ for Sb 1 and from 83.32 (5) to $97.50(6)^{\circ}$ for the Sb 2 octahedron (Table 1).

At 92 K , small changes are observed in the lengths of the $\mathrm{Sb}-\mathrm{Cl}$ bonds and $\mathrm{Cl}-\mathrm{Sb}-\mathrm{Cl}$ angles. The shortening of one $\mathrm{Sb}-\mathrm{Cl}$ bond length leads to the elongation of the corresponding trans $\mathrm{Sb}-\mathrm{Cl}$ bond. The values of shortening/elongation in appropriate pairs of $\mathrm{Sb}-\mathrm{Cl}$ bonds are of comparable magnitude. The largest changes of the $\mathrm{Sb}-\mathrm{Cl}$ bond lengths are observed for the trans pair consisting of the $\mathrm{Sb} 1-\mathrm{Cl} 5$ and $\mathrm{Sb} 1-\mathrm{Cl} 6$ bonds [average 0.033 (6) \AA] in the Sb 1 octahedron and the $\mathrm{Sb} 2-\mathrm{Cl} 11$ and $\mathrm{Sb} 2-\mathrm{Cl} 12$ trans pair [average $0.030(6) \AA$] in the Sb 2 octahedron (Tables 1 and 3). In comparison with $\mathrm{Sb}-\mathrm{Cl}$ bond lengths of the reference octahedron, the deviation from 2.643 (6) \AA is larger at 92 K than at room temperature. The changes in the $\mathrm{Sb}-\mathrm{Cl}$ bond lengths in the two crystallographically independent octahedra are comparable at both temperatures, whereas the $\mathrm{Cl}-\mathrm{Sb}-\mathrm{Cl}$ angles show significant differences. The largest change in the $\mathrm{Cl}-\mathrm{Sb}-\mathrm{Cl}$ bond angles for the Sb 1 octahedron amounts to $0.72(8)^{\circ}(\mathrm{Cl} 2-\mathrm{Sb} 1-\mathrm{Cl} 4)$, whereas for the second one it is much larger, 3.77 (8) ${ }^{\circ}$ ($\left.\mathrm{Cl} 8-\mathrm{Sb} 2-\mathrm{Cl} 10\right)$.

All the aminoguanidinium cations are joined to $\left[\mathrm{SbCl}_{6}\right]^{3-}$ octahedra through $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds. Each amino-

Figure 2
Type of disorder of the AG4 aminoguanidinium(1+) cation at 295 K . Displacement ellipsoids are plotted at the 50% probability level.
guanidinium group forms several hydrogen bonds. Tables 2 and 4 present hydrogen bonds with $\mathrm{H} \cdots \mathrm{Cl}$ distances shorter than ca $2.6 \AA$. The geometries of the hydrogen bonds at both temperatures are comparable. The $\mathrm{N} \cdots \mathrm{Cl}$ distances for the shortest $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds are in the range 3.118 (6)-3.444 (6) \AA at room temperature and decrease to 3.100 (4)-3.353 (4) \AA at 92 K . Among these $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ interactions, the largest changes in $\mathrm{N} \cdots \mathrm{Cl}$ distances and N $\mathrm{H} \cdots \mathrm{Cl}$ angles are noted for $\mathrm{Cl} 2, \mathrm{Cl} 8, \mathrm{Cl} 10$ and Cl 12 . They are reflected in changes of the $\mathrm{Cl}-\mathrm{Sb}-\mathrm{Cl}$ angles: $\mathrm{Cl} 2-\mathrm{Sb} 1-\mathrm{Cl} 4$ $0.72(8)^{\circ}, \quad \mathrm{Cl} 8-\mathrm{Sb} 2-\mathrm{Cl} 10 \quad 3.77(8)^{\circ}, \quad \mathrm{Cl} 9-\mathrm{Sb} 2-\mathrm{Cl} 10$ $2.06(11)^{\circ}$ and $\mathrm{Cl} 8-\mathrm{Sb} 2-\mathrm{Cl} 121.69(8)^{\circ}$.

Figure 3
Hydrogen-bonding scheme (indicated by dashed lines) involving the Sb 2 octahedron in the structure of (I) at 295 K . Arrows denote relative shortening/elongation of appropriate $\mathrm{Sb}-\mathrm{Cl}$ bonds in relation to undistorted octahedral $\left[\mathrm{SbCl}_{6}\right]^{3-}$ (Schroeder \& Jacobson, 1973). Displacement ellipsoids are plotted at the 50% probability level. [Symmetry codes: (i) $x, 1-y, z-\frac{1}{2}$; (ii) $x-1, y, z$.]

In Fig. 3, the hydrogen-bonding scheme to the Sb 2 octahedron is depicted. Arrows denote relative elongation or shortening of $\mathrm{Sb}-\mathrm{Cl}$ bonds in comparison with the reference structure. It should be noted that the hydrogen bonds are formed to Cl atoms of the elongated $\mathrm{Sb}-\mathrm{Cl}$ bonds. The $\mathrm{H}^{+} \ldots \mathrm{Cl}^{-}$interactions to the $\mathrm{Cl} 8, \mathrm{Cl} 10$ and Cl 12 atoms lead to a shift of the lone electron pair at $\mathrm{Sb}^{\text {III }}$ in the direction of the positive charge located on cations, resulting in elongation of the appropriate $\mathrm{Sb}-\mathrm{Cl}$ bonds and shortening of $\mathrm{Sb}-\mathrm{Cl}$ bonds located in the trans position. The analogous situation is observed in the other octahedron.

Experimental

Compound (I) was prepared by the reaction of aminoguanidinium hydrocarbonate and antimony trichloride (molar ratio from 1:1 to 4:1) in an aqueous solution of concentrated hydrochloric acid. The solution obtained was evaporated slowly at constant room temperature, resulting in single crystals of suitable dimensions for the X-ray structure analysis.

Compound (I) at 295 K

Crystal data

$\left(\mathrm{CH}_{7} \mathrm{~N}_{4}\right)\left(\mathrm{CH}_{8} \mathrm{~N}_{4}\right)\left[\mathrm{SbCl}_{6}\right]$
$M_{r}=485.67$
Monoclinic, $P c$
$a=7.522$ (2) \AA
$b=13.856$ (3) \AA
$c=15.544(3) \AA$
$\beta=94.75$ (3) ${ }^{\circ}$
$V=1614.5(6) \AA^{3}$
$Z=4$
$D_{x}=1.998 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.99$ (1) $\mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Kuma KM-4 diffractometer $\omega-\theta$ scans
Absorption correction: ψ scan (Sheldrick, 1990)
$T_{\text {min }}=0.368, T_{\text {max }}=0.446$
5690 measured reflections
2867 independent reflections (plus 2823 Friedel-related reflections)
D_{m} measured by flotation method $\mathrm{CCl}_{4} / \mathrm{CHBr}_{3}$
Mo $K \alpha$ radiation
Cell parameters from 40
reflections
$\theta=7-14^{\circ}$
$\mu=2.695 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Irregular, colourless
$0.40 \times 0.40 \times 0.30 \mathrm{~mm}$

5052 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=25.06^{\circ}$
$h=-8 \rightarrow 8$
$k=0 \rightarrow 16$
$l=-18 \rightarrow 18$
2 standard reflections every 50 reflections intensity decay: 1.0%

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ},^{\circ}\right)$ for (I) at 295 K .

Sb1-Cl1	2.469 (2)	Sb2-Cl7	2.456 (2)
Sb1-Cl2	2.902 (2)	Sb2-Cl8	2.931 (2)
Sb1-Cl3	2.532 (2)	Sb2-C19	2.463 (2)
Sb1-Cl4	2.802 (2)	Sb2-Cl10	2.874 (2)
Sb1-Cl5	2.577 (2)	Sb2-Cl11	2.518 (2)
Sb1-Cl6	2.705 (2)	Sb2-Cl12	2.807 (2)
$\mathrm{Cl} 1-\mathrm{Sb} 1-\mathrm{Cl} 2$	173.19 (6)	$\mathrm{Cl} 7-\mathrm{Sb} 2-\mathrm{Cl} 8$	179.34 (5)
$\mathrm{Cl} 1-\mathrm{Sb} 1-\mathrm{Cl} 3$	93.59 (6)	C17-Sb2-C19	90.77 (6)
$\mathrm{Cl} 1-\mathrm{Sb} 1-\mathrm{Cl} 4$	91.53 (5)	$\mathrm{Cl} 7-\mathrm{Sb} 2-\mathrm{Cl} 10$	84.28 (5)
$\mathrm{Cl} 1-\mathrm{Sb} 1-\mathrm{Cl} 5$	91.59 (6)	C17-Sb2-Cl11	92.51 (6)
Cl1-Sb1-Cl6	92.15 (6)	$\mathrm{Cl} 7-\mathrm{Sb} 2-\mathrm{Cl} 12$	86.63 (5)
$\mathrm{Cl} 2-\mathrm{Sb} 1-\mathrm{Cl} 3$	90.68 (5)	C18-Sb2-C19	89.37 (6)
$\mathrm{Cl} 2-\mathrm{Sb} 1-\mathrm{Cl} 4$	84.13 (5)	$\mathrm{Cl} 8-\mathrm{Sb} 2-\mathrm{Cl} 10$	95.50 (5)
$\mathrm{Cl} 2-\mathrm{Sb} 1-\mathrm{Cl} 5$	93.61 (5)	Cl8-Sb2-Cl11	86.85 (5)
$\mathrm{Cl} 2-\mathrm{Sb} 1-\mathrm{Cl} 6$	82.65 (5)	$\mathrm{Cl} 8-\mathrm{Sb} 2-\mathrm{Cl} 12$	93.99 (5)
Cl3-Sb1-Cl4	174.79 (5)	$\mathrm{Cl} 9-\mathrm{Sb} 2-\mathrm{Cl} 10$	170.96 (7)
Cl3-Sb1-Cl5	91.31 (6)	$\mathrm{Cl} 9-\mathrm{Sb} 2-\mathrm{Cl} 11$	89.36 (6)
Cl3-Sb1-Cl6	88.54 (5)	$\mathrm{Cl} 9-\mathrm{Sb} 2-\mathrm{Cl} 12$	97.50 (6)
Cl4-Sb1-Cl5	89.49 (6)	Cl10-Sb2-Cl11	83.32 (5)
Cl4-Sb1-Cl6	90.33 (5)	C110-Sb2-Cl12	89.77 (5)
Cl5-Sb1-Cl6	176.25 (5)	Cl11-Sb2-Cl12	173.10 (5)

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (I) at 295 K .

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 12 \cdots \mathrm{Cl} 4^{\mathrm{i}}$	0.90	2.41	$3.310(5)$	173
$\mathrm{~N} 1-\mathrm{H} 11 \cdots \mathrm{Cl1} 0^{\mathrm{ii}}$	0.90	2.51	$3.323(5)$	150
$\mathrm{~N} 2-\mathrm{H} 22 \cdots \mathrm{Cl} 12$	0.90	2.43	$3.291(5)$	159
$\mathrm{~N} 2-\mathrm{H} 21 \cdots \mathrm{Cl} 10^{\mathrm{ii}}$	0.90	2.44	$3.266(5)$	152
$\mathrm{~N} 4-\mathrm{H} 41 \cdots \mathrm{Cl} 2^{\mathrm{i}}$	0.90	2.33	$3.182(5)$	158
$\mathrm{~N} 4-\mathrm{H} 42 \cdots \mathrm{Cl} 5$	0.90	2.41	$3.183(5)$	144
$\mathrm{~N} 5-\mathrm{H} 52 \cdots \mathrm{Cl} 8$	0.90	2.35	$3.227(5)$	164
$\mathrm{~N} 5-\mathrm{H} 51 \cdots \mathrm{Cl} 2^{\text {iii }}$	0.90	2.58	$3.303(5)$	138
$\mathrm{~N} 6-\mathrm{H} 62 \cdots \mathrm{Cl} 6$	0.90	2.41	$3.238(5)$	154
$\mathrm{~N} 7-\mathrm{H} 7 \cdots \mathrm{Cl} 2$	0.90	2.49	$3.195(5)$	136
$\mathrm{~N} 8-\mathrm{H} 83 \cdots \mathrm{Cl} 8$	0.90	2.22	$3.118(6)$	174
$\mathrm{~N} 8-\mathrm{H} 82 \cdots \mathrm{Cl} 12$	0.90	2.47	$3.223(5)$	142
$\mathrm{~N} 8-\mathrm{H} 81 \cdots \mathrm{Cl} 10^{\mathrm{iv}}$	0.90	2.63	$3.374(6)$	141
$\mathrm{~N} 11-\mathrm{H} 111 \cdots \mathrm{Cl4}$				

[^0]
Refinement

```
Refinement on \(F^{2}\)
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024\)
\(w R\left(F^{2}\right)=0.065\)
\(S=1.097\)
5690 reflections
329 parameters
H -atom parameters constrained
\(w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.03 P)^{2}\right.\)
    \(+1.1741 P\) ]
    where \(P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3\)
```


Compound (I) at 92 K

Crystal data

$\left(\mathrm{CH}_{7} \mathrm{~N}_{4}\right)\left(\mathrm{CH}_{8} \mathrm{~N}_{4}\right)\left[\mathrm{SbCl}_{6}\right]$
$M_{r}=485.67$
Monoclinic, $P c$
$a=7.426(2) \AA$
$b=13.836$ (3) \AA
$c=15.403(3) \AA$
$\beta=95.27$ (3) ${ }^{\circ}$
$V=1575.9(6) \AA^{3}$
$Z=4$

Data collection

Kuma KM-4 diffractometer
$\omega-\theta$ scans
Absorption correction: ψ scan (Sheldrick, 1990)
$T_{\text {min }}=0.360, T_{\text {max }}=0.437$
5579 measured reflections
2804 independent reflections (plus 2775 Friedel-related reflections)

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.048$
$S=1.093$
5579 reflections
319 parameters
H -atom parameters constrained
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\text {max }}=0.59 \mathrm{e}^{\circ}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.36$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 1997)
Extinction coefficient: 0.0045 (2)
Absolute structure: (Flack, 1983)
Flack parameter $=-0.04(2)$
$D_{x}=2.047 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 40 reflections
$\theta=7-14^{\circ}$
$\mu=2.761 \mathrm{~mm}^{-1}$
$T=92.0(5) \mathrm{K}$
Irregular, colourless
$0.40 \times 0.40 \times 0.30 \mathrm{~mm}$

5334 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=25.06^{\circ}$
$h=-8 \rightarrow 8$
$k=-16 \rightarrow 0$
$l=-18 \rightarrow 17$
2 standard reflections every 50 reflections intensity decay: 1.1%

$$
\begin{aligned}
& \begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}^{2}\right)+(0.0216 P)^{2} \\
&\quad+2.2178 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.48 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-0.56 \mathrm{e} \AA^{-3} \\
& \text { Absolute structure: }(\text { Flack, } 1983) \\
& \text { Flack parameter }=-0.026(15)
\end{aligned}
\end{aligned}
$$

Table 3
Selected geometric parameters $\left({ }^{\circ},{ }^{\circ}\right)$ for (I) at 92 K .

$\mathrm{Sb} 1-\mathrm{Cl} 1$	$2.4633(11)$	$\mathrm{Sb} 2-\mathrm{Cl} 7$	$2.4511(12)$
$\mathrm{Sb} 1-\mathrm{Cl} 2$	$2.9108(11)$	$\mathrm{Sb} 2-\mathrm{Cl} 8$	$2.9380(13)$
$\mathrm{Sb} 1-\mathrm{Cl} 3$	$2.5067(12)$	$\mathrm{Sb} 2-\mathrm{Cl} 9$	$2.4508(11)$
$\mathrm{Sb} 1-\mathrm{Cl} 4$	$2.8253(13)$	$\mathrm{Sb} 2-\mathrm{Cl} 10$	$2.8995(12)$
$\mathrm{Sb} 1-\mathrm{Cl} 5$	$2.5472(13)$	$\mathrm{Sb} 2-\mathrm{Cl} 11$	$2.4888(12)$
$\mathrm{Sb} 1-\mathrm{Cl} 6$	$2.7405(13)$	$\mathrm{Sb} 2-\mathrm{Cl} 12$	$2.8379(12)$
			$177.50(3)$
$\mathrm{Cl} 1-\mathrm{Sb} 1-\mathrm{Cl} 2$	$173.85(4)$	$\mathrm{Cl} 7-\mathrm{Sb} 2-\mathrm{Cl} 8$	$90.08(4)$
$\mathrm{Cl} 1-\mathrm{Sb} 1-\mathrm{Cl} 3$	$92.89(4)$	$\mathrm{Cl} 1-\mathrm{Sb} 2-\mathrm{Cl} 9$	$83.03(3)$
$\mathrm{Cl} 1-\mathrm{Sb} 1-\mathrm{Cl} 4$	$92.07(4)$	$\mathrm{Cl} 1-\mathrm{Sb} 2-\mathrm{Cl} 10$	$92.50(4)$
$\mathrm{Cl} 1-\mathrm{Sb} 1-\mathrm{Cl} 5$	$91.35(4)$	$\mathrm{Cl} 1-\mathrm{Sb} 2-\mathrm{Cl} 11$	$85.21(4)$
$\mathrm{Cl} 1-\mathrm{Sb} 1-\mathrm{Cl} 6$	$91.70(4)$	$\mathrm{Cl} 1-\mathrm{Sb} 2-\mathrm{Cl} 12$	$87.49(4)$
$\mathrm{Cl} 2-\mathrm{Sb} 1-\mathrm{Cl} 3$	$90.06(4)$	$\mathrm{Cl} 8-\mathrm{Sb} 2-\mathrm{Cl} 9$	$99.28(3)$
$\mathrm{Cl} 2-\mathrm{Sb} 1-\mathrm{Cl} 4$	$84.85(3)$	$\mathrm{Cl} 8-\mathrm{Sb} 2-\mathrm{Cl} 10$	$86.89(4)$
$\mathrm{Cl} 2-\mathrm{Sb} 1-\mathrm{Cl} 5$	$93.95(3)$	$\mathrm{Cl} 8-\mathrm{Sb} 2-\mathrm{Cl} 11$	$95.68(3)$
$\mathrm{Cl} 2-\mathrm{Sb} 1-\mathrm{Cl} 6$	$83.00(3)$	$\mathrm{Cl} 8-\mathrm{Sb} 2-\mathrm{Cl} 12$	$168.90(4)$
$\mathrm{Cl} 3-\mathrm{Sb} 1-\mathrm{Cl} 4$	$174.79(3)$	$\mathrm{Cl} 9-\mathrm{Sb} 2-\mathrm{Cl} 10$	$89.08(4)$
$\mathrm{Cl} 3-\mathrm{Sb} 1-\mathrm{Cl5}$	$91.69(4)$	$\mathrm{Cl} 9-\mathrm{Sb} 2-\mathrm{Cl} 11$	$97.76(4)$
$\mathrm{Cl} 3-\mathrm{Sb} 1-\mathrm{Cl} 6$	$88.18(4)$	$\mathrm{Cl} 9-\mathrm{Sb} 2-\mathrm{Cl} 12$	$82.56(3)$
$\mathrm{Cl} 4-\mathrm{Sb} 1-\mathrm{Cl5}$	$89.78(4)$	$\mathrm{Cl} 10-\mathrm{Sb} 2-\mathrm{Cl} 11$	$90.35(3)$
$\mathrm{Cl} 4-\mathrm{Sb} 1-\mathrm{Cl} 6$	$90.09(4)$	$\mathrm{Cl} 10-\mathrm{Sb} 2-\mathrm{Cl} 12$	$172.78(3)$
$\mathrm{Cl} 5-\mathrm{Sb} 1-\mathrm{Cl} 6$	$176.95(3)$	$\mathrm{Cl} 11-\mathrm{Sb} 2-\mathrm{Cl} 12$	

Table 4
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$) for (I) at 92 K .

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H12 $\cdots \mathrm{Cl} 4^{\mathrm{i}}$	0.90	2.40	3.300 (4)	176
$\mathrm{N} 1-\mathrm{H} 11 \cdots \mathrm{Cl} 10^{\text {ii }}$	0.90	2.46	3.279 (3)	152
N2-H22 . . Cl 12	0.90	2.45	3.267 (3)	151
$\mathrm{N} 2-\mathrm{H} 21 \cdots \mathrm{Cl} 10^{\text {ii }}$	0.90	2.44	3.255 (3)	151
N4-H41 \cdots Cl2 ${ }^{\text {i }}$	0.90	2.26	3.129 (4)	164
N4-H42 \cdots Cl5	0.90	2.35	3.152 (4)	148
N5-H52 . . Cl8	0.90	2.31	3.192 (3)	168
N5-H51 ${ }^{\text {C }}$ Cl2 ${ }^{\text {iii }}$	0.90	2.44	3.269 (3)	153
N6-H62 . . Cl 6	0.90	2.33	3.206 (4)	166
N7-H7 \cdots Cl2	0.90	2.42	3.172 (4)	142
N8-H83 \cdots Cl8	0.90	2.27	3.100 (4)	153
N8-H82 \cdots Cl12	0.90	2.33	3.176 (4)	157
N8-H81 \cdots Cl1 $0^{\text {iv }}$	0.90	2.51	3.270 (4)	142
N11-H111 \cdots Cl4 ${ }^{\text {v }}$	0.90	2.49	3.353 (4)	160

Symmetry codes: (i) $x-1, y, z$; (ii) $x, 1-y, \frac{1}{2}+z$; (iii) $x, 1-y, z-\frac{1}{2}$; (iv) $1+x, y, z ;$ (v) $x,-y, z-\frac{1}{2}$.

For both compounds, data collection: Kuma Diffraction Software (Kuma, 1996); cell refinement: Kuma Diffraction Software; data reduction: Kuma Diffraction Software (Kuma, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

MB is a holder of the scholarship 'The Annual Stipend for Young Scientists' of The Foundation for Polish Science in 2001.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BJ1014). Services for accessing these data are described at the back of the journal.

References

Akella, A. \& Keszler, D. A. (1994). Acta Cryst. C50, 1974-1976.
Bryden, J. H. (1957). Acta Cryst. 10, 677-680.
Bujak, M., Osadczuk, P. \& Zaleski, J. (1999). Acta Cryst. C55, 1443-1447.
Bujak, M. \& Zaleski, J. (1998). Acta Cryst. C54, 1773-1777.
Bukvetskii, B. V., Gerasimenko, A. V. \& Davidovich, R. L. (1990). Koord. Khim. 16, 1479-1484.
Davidovich, R. L., Logvinova, V. B., Tkachev, V. V. \& Atovmyan, L. O. (1995). Koord. Khim. 21, 819-823.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Jakubas, R. (1986). Solid State Commun. 60, 389-391.
Jakubas, R. (1990). In Structure and Phase Transitions in Alkylammonium Halogenoantimonates(III) and Bismuthates(III). Wrocław, Poland: Wrocław University Press.
Koskinen, J. T., Koskinen, M., Mutikainen, I., Mannfors, B. \& Elo, H. (1996). Z. Naturforsch. Teil B, 51, 1771-1778.
Kuma (1995). Kuma Diffraction Software. Version 9.0. Kuma Diffraction, Wrocław, Poland.
Kuma (1996). Kuma Diffraction Software. Version 8.1.0. Kuma Diffraction, Wrocław, Poland.
Ross, C. R. II, Bauer, M. R., Nielson, R. M. \& Abrahams, S. C. (1999). Acta Cryst. B55, 246-254.
Ross, C. R. II, Paulsen, B. L., Nielson, R. M. \& Abrahams, S. C. (1998). Acta Cryst. B54, 417-423.
Schroeder, D. R. \& Jacobson, R. A. (1973). Inorg. Chem. 12, 210-213.
Sheldrick, G. M. (1990). SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS 97 and SHELXL97. University of Göttingen, Germany.
Sobczyk, L., Jakubas, R. \& Zaleski, J. (1997). Polish J. Chem. 71, 265-330.
Zaleski, J. (1995). In Structure, Phase Transition and Molecular Motions in Alkylammonium Halogenoantimonates(III) and Bismuthates(III). Opole, Poland: Opole University Press.
Zaleski, J. \& Pietraszko, A. (1996). Acta Cryst. B52, 287-295.

[^0]: Symmetry codes: (i) $x-1, y, z$; (ii) $x, 1-y, \frac{1}{2}+z$; (iii) $x, 1-y, z-\frac{1}{2}$; (iv) $1+x, y, z$; (v) $x,-y, z-\frac{1}{2}$.

